37 research outputs found

    WL 17: A Young Embedded Transition Disk

    Full text link
    We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the ρ\rho Ophiuchus L1688 molecular cloud complex, which show that it has a 12 AU hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband SED and also require such high extinction that it would presumably arise from dense material close to the source such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole were produced by the formation of planets it could place constraints on the timescale for the growth of planetesimals in protoplanetary disks.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in ApJ

    Protoplanetary Disks in the Orion Nebula Cluster: Gas Disk Morphologies and Kinematics as seen with ALMA

    Full text link
    We present Atacama Large Millimeter Array CO(3-2) and HCO+^+(4-3) observations covering the central 1.51\rlap{.}'5×\times1.51\rlap{.}'5 region of the Orion Nebula Cluster (ONC). The unprecedented level of sensitivity (\sim0.1 mJy beam1^{-1}) and angular resolution (\sim0.09350\rlap{.}''09 \approx 35 AU) of these line observations enable us to search for gas-disk detections towards the known positions of submillimeter-detected dust disks in this region. We detect 23 disks in gas: 17 in CO(3-2), 17 in HCO+^+(4-3), and 11 in both lines. Depending on where the sources are located in the ONC, we see the line detections in emission, in absorption against the warm background, or in both emission and absorption. We spectrally resolve the gas with 0.50.5 km s1^{-1} channels, and find that the kinematics of most sources are consistent with Keplerian rotation. We measure the distribution of gas-disk sizes and find typical radii of \sim50-200 AU. As such, gas disks in the ONC are compact in comparison with the gas disks seen in low-density star-forming regions. Gas sizes are universally larger than the dust sizes. However, the gas and dust sizes are not strongly correlated. We find a positive correlation between gas size and distance from the massive star θ1\theta^1 Ori C, indicating that disks in the ONC are influenced by photoionization. Finally, we use the observed kinematics of the detected gas lines to model Keplerian rotation and infer the masses of the central pre-main-sequence stars. Our dynamically-derived stellar masses are not consistent with the spectroscopically-derived masses, and we discuss possible reasons for this discrepancy.Comment: 42 pages, 31 figure

    Protoplanetary Disk Masses from Radiative Transfer Modeling: A Case Study in Taurus

    Get PDF
    Measuring the masses of protoplanetary disks is crucial for understanding their planet-forming potential. Typically, dust masses are derived from (sub-)millimeter flux density measurements plus assumptions for the opacity, temperature, and optical depth of the dust. Here we use radiative transfer models to quantify the validity of these assumptions with the aim of improving the accuracy of disk dust mass measurements. We first carry out a controlled exploration of disk parameter space. We find that the disk temperature is a strong function of disk size, while the optical depth depends on both disk size and dust mass. The millimeter-wavelength spectral index can be significantly shallower than the naive expectation due to a combination of optical depth and deviations from the Rayleigh-Jeans regime. We fit radiative transfer models to the spectral energy distributions (SEDs) of 132 disks in the Taurus-Auriga region using a Markov chain Monte Carlo approach. We used all available data to produce the most complete SEDs used in any extant modeling study. We perform the fitting twice: first with unconstrained disk sizes and again imposing the disk size--brightness relation inferred for sources in Taurus. This constraint generally forces the disks to be smaller, warmer, and more optically thick. From both sets of fits, we find disks to be \sim1--5 times more massive than when derived using (sub-)millimeter measurements and common assumptions. With the uncertainties derived from our model fitting, the previously measured dust mass--stellar mass correlation is present in our study but only significant at the 2σ\sigma level.Comment: 28 pages, 13 figures, accepted for publication in A

    A VLA Survey For Faint Compact Radio Sources in the Orion Nebula Cluster

    Full text link
    We present Karl G. Janksy Very Large Array (VLA) 1.3 cm, 3.6 cm, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster. We mosaicked 34 square arcminutes at 1.3 cm, 70 square arcminutes at 3.6 cm and 109 square arcminutes at 6 cm, containing 778 near-infrared detected YSOs and 190 HST-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source we fit a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from sub-millimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify variability of our sources.Comment: 13 pages, 6 figures, 4 tables, ApJ, in pres

    High-precision Dynamical Masses of Pre-main-sequence Stars with ALMA and Gaia

    Get PDF
    The Keplerian rotation in protoplanetary disks can be used to robustly measure stellar masses at very high precision if the source distance is known. We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of spatially and spectrally resolved (CO)-C-12 (2-1) emission toward the disks around 2MASS J16262774-2527247 (the tertiary companion to ROXs 12 at 5100 au), CT Cha, and DH Tau. We employ detailed modeling of the Keplerian rotation profile, coupled with accurate distances from Gaia, to directly measure the stellar masses with similar to 2% precision. We also compare these direct mass measurements with the masses inferred from evolutionary models, determined in a statistically rigorous way. We find that 2MASS J16262774-2527247 has a mass of 0.535(-)(0.007)(+0.006) M-circle dot and CT Cha has a mass of 0.796(-0.014)(+0.015) M-circle dot, broadly consistent with evolutionary models, although potentially significant differences remain. DH Tau has a mass of 0.101(-0.003)(+0.004) M-circle dot, but it suffers from strong foreground absorption that may affect our mass estimate. The combination of ALMA, Gaia, and codes like pdspy, presented here, can be used to infer the dynamical masses for large samples of young stars and substellar objects, and place constraints on evolutionary models.Heising-Simons Foundation; Homer L. Dodge Endowed Chair; National Science Foundation Graduate Research Fellowship [2012115762]; NSF AAG grant [1311910]; NASA's Science Mission DirectorateThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    AB Aurigae Resolved: Evidence for Spiral Structure

    Full text link
    We obtained high angular resolution (~2") images of the 13CO(J=1-0) line and 2.7 millimeter continuum emission, and slightly lower resolution images of 12CO(J=1-0) and C18O(J=1-0) line emission toward the Herbig Ae star AB Aurigae. We resolve a circumstellar disk of diameter 780 AU (FWHM) with a velocity pattern consistent with a purely rotational disk at inclination 21.5 degrees and position angle 58.6 degrees. Using Keplerian disk models, we find a central source dynamical mass of 2.8+-0.1 Msun and a cutoff radius of 615 AU for the 13CO emission. Inclination, mass, and radius determined from 12CO and C18O observations agree with those values, given optical depth and abundance effects. As a result of the high angular resolution of our observations, we confirm the existence of spiral structure suggested by near-IR scattered light images and show that the spiral arms represent density contrasts in the disk.Comment: 11 pages, 3 figures, accepted ApJ Letter

    Protoplanetary Disk Masses in the Young NGC 2024 Cluster

    Get PDF
    We present the results from a Submillimeter Array survey of the 887 micron continuum emission from the protoplanetary disks around 95 young stars in the young cluster NGC 2024. Emission was detected from 22 infrared sources, with flux densities from ~5 to 330 mJy; upper limits (at 3sigma) for the other 73 sources range from 3 to 24 mJy. For standard assumptions, the corresponding disk masses range from ~0.003 to 0.2Msolar, with upper limits at 0.002--0.01Msolar. The NGC 2024 sample has a slightly more populated tail at the high end of its disk mass distribution compared to other clusters, but without more information on the nature of the sample hosts it remains unclear if this difference is statistically significant or a superficial selection effect. Unlike in the Orion Trapezium, there is no evidence for a disk mass dependence on the (projected) separation from the massive star IRS2b in the NGC 2024 cluster. We suggest that this is due to either the cluster youth or a comparatively weaker photoionizing radiation field.Comment: ApJ, in pres

    Simultaneous Exoplanet Characterization and deep wide-field imaging with a diffractive pupil telescope

    Full text link
    High-precision astrometry can identify exoplanets and measure their orbits and masses, while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-microarcsecond accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.Comment: 15 pages, 6 figures. This second paper, following the paper describing the diffractive pupil telescope (DPT) astrometric technique, shows how simultaneous astrometry and coronagraphy observations, enabled by the DPT concept, constrain the orbital parameters and mass of exoplanet

    Isolating Dust and Free-Free Emission in ONC Proplyds with ALMA Band 3 Observations

    Full text link
    The Orion Nebula Cluster (ONC) hosts protoplanetary disks experiencing external photoevaporation by the cluster's intense UV field. These ``proplyds" are comprised of a disk surrounded by an ionization front. We present ALMA Band 3 (3.1 mm) continuum observations of 12 proplyds. Thermal emission from the dust disks and free-free emission from the ionization fronts are both detected, and the high-resolution (0.057") of the observations allows us to spatially isolate these two components. The morphology is unique compared to images at shorter (sub)millimeter wavelengths, which only detect the disks, and images at longer centimeter wavelengths, which only detect the ionization fronts. The disks are small (rdr_d = 6.4--38 au), likely due to truncation by ongoing photoevaporation. They have low spectral indices (α2.1\alpha \lesssim 2.1) measured between Bands 7 and 3, suggesting the dust emission is optically thick. They harbor tens of Earth masses of dust as computed from the millimeter flux using the standard method, although their true masses may be larger due to the high optical depth. We derive their photoevaporative mass-loss rates in two ways: first, by invoking ionization equilibrium, and second using the brightness of the free-free emission to compute the density of the outflow. We find decent agreement between these measurements and M˙\dot M = 0.6--18.4 ×\times 107^{-7} MM_\odot yr1^{-1}. The photoevaporation timescales are generally shorter than the \sim1 Myr age of the ONC, underscoring the known ``proplyd lifetime problem." Disk masses that are underestimated due to being optically thick remains one explanation to ease this discrepancy.Comment: 17 pages, 12 figures, accepted for publication in Ap
    corecore